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We first review how wavelets may be used for multi-resolution image processing,
describing the filter-bank implementation of the discrete wavelet transform (DWT)
and how it may be extended via separable filtering for processing images and other
multi-dimensional signals. We then show that the condition for inversion of the DWT
(perfect reconstruction) forces many commonly used wavelets to be similar in shape,
and that this shape produces severe shift dependence (variation of DWT coefficient
energy at any given scale with shift of the input signal). It is also shown that separable
filtering with the DWT prevents the transform from providing directionally selective
filters for diagonal image features.
Complex wavelets can provide both shift invariance and good directional selectiv-

ity, with only modest increases in signal redundancy and computation load. However,
development of a complex wavelet transform (CWT) with perfect reconstruction and
good filter characteristics has proved difficult until recently. We now propose the
dual-tree CWT as a solution to this problem, yielding a transform with attractive
properties for a range of signal and image processing applications, including motion
estimation, denoising, texture analysis and synthesis, and object segmentation.

Keywords: image processing; wavelets; shift invariance; directional filters;
perfect reconstruction; complex filters

1. Introduction

In this paper we consider how wavelets may be used for image processing. To date,
there has been considerable interest in wavelets for image compression, and they are
now commonly used by researchers for this purpose, even though the main interna-
tional standards still use the discrete cosine transform (DCT). However, for image
processing tasks, other than compression, the take-up of wavelets has been less enthu-
siastic. Here we analyse possible reasons for this and present some new ways to use
wavelets that offer significant advantages.
A good review of wavelets and their application to compression may be found

in Rioul & Vetterli (1991) and in-depth coverage is given in the book by Vetterli &
Kovacevic (1995). An issue of the Proceedings of the IEEE (Kovacevic & Daubechies
1996) has been devoted to wavelets and includes many very readable articles by
leading experts.
In § 2 of this paper we introduce the basic discrete wavelet filter tree and show

how it may be used to decompose multi-dimensional signals. In § 3 we show some
typical wavelets and illustrate the similar shapes of those that all satisfy the per-
fect reconstruction constraints. Unfortunately, as explained in § 4, discrete wavelet

Phil. Trans. R. Soc. Lond. A (1999) 357, 2543–2560
2543

c© 1999 The Royal Society



2544 N. G. Kingsbury

x

✲ H1(z) ✲✖✕
✗✔

↓2 ✲

✲ H0(z) ✲✖✕
✗✔

↓2

Level 1

x1

x0

✲ H1(z) ✲✖✕
✗✔

↓2 ✲

✲ H0(z) ✲✖✕
✗✔

↓2

Level 2

x01

x00

✲ H1(z) ✲✖✕
✗✔

↓2 ✲

✲ H0(z) ✲✖✕
✗✔

↓2

Level 3

x001

x000

✲ H1(z) ✲✖✕
✗✔

↓2 ✲

✲ H0(z) ✲✖✕
✗✔

↓2

Level 4

✲

x0001

x0000

(a)

(b)

X(z)

✲ H1(z) ✲✖✕
✗✔

↓2 ✲

✲ H0(z) ✲✖✕
✗✔

↓2

✖✕
✗✔

↑2 ✲ G1(z) ✻

✲✖✕
✗✔

↑2 ✲ G0(z)
❄

✍✌
✎�
+ ✲ Y (z)2-band reconstruction block

X0(z)

❄

X1(z)

✻

1
2{X0(z) + X0(−z)}

❄

1
2{X1(z) + X1(−z)}

✻

Figure 1. (a) Four-level binary wavelet tree of lowpass filters, H0, and highpass filters, H1; and
(b) the two-band reconstruction block, used to achieve perfect reconstruction from an inverse
tree employing filters, G0 and G1.

decompositions based on these typical wavelets suffer from two main problems that
hamper their use for many image analysis and reconstruction tasks as follows.

(i) Lack of shift invariance, which means that small shifts in the input signal can
cause major variations in the distribution of energy between wavelet transform
coefficients at different scales.

(ii) Poor directional selectivity for diagonal features, because the wavelet filters are
separable and real.

Complex wavelets are shown, in § 5, to overcome these two key problems by intro-
ducing limited redundancy into the transform. However, a further problem arises
here because perfect reconstruction becomes difficult to achieve for complex wavelet
decompositions beyond level 1, when the input to each level becomes complex. To
overcome this, we have recently developed the dual-tree complex wavelet transform
(DT CWT), which allows perfect reconstruction while still providing the other advan-
tages of complex wavelets. This is described in § 6, and then § 7 discusses constraints
on the DT CWT filter characteristics, required in order to achieve close approxima-
tions to shift invariance. Finally, in § 8, we suggest possible application areas for the
DT CWT, including an example of image denoising.

2. The wavelet tree for multi-dimensional signals

For one-dimensional signals, the conventional discrete wavelet transform (DWT) may
be regarded as equivalent to filtering the input signal with a bank of bandpass filters,
whose impulse responses are all approximately given by scaled versions of a mother
wavelet. The scaling factor between adjacent filters is usually 2:1, leading to octave
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Figure 2. Two levels of the quaternary separable wavelet tree, normally used for two-dimensional
signals. Row filtering is denoted by the z transform parameter z1, and column filtering by z2.

bandwidths and centre frequencies that are one octave apart. At the coarsest scale,
a lowpass filter is also required to represent the lowest frequencies of the signal. The
outputs of the filters are usually maximally decimated so that the number of DWT
output samples equals the number of input samples and the transform is invertible.
The octave-band DWT is most efficiently implemented by the dyadic wavelet decom-
position tree of Mallat (1989), a cascade of two-band perfect-reconstruction filter
banks, shown in figure 1a. Because of the decimation by two at each stage, the total
output sample rate equals the input sample rate and there is no redundancy in the
transform.
In order to reconstruct the signal, a pair of reconstruction filters G0 and G1 are

used in the arrangement of figure 1b, and usually the filters are designed such that
the z transform of the output signal Y (z) is identical to that of the input signal
X(z). This is known as the condition for perfect reconstruction. Hence, in figure 1a,
x000 may be reconstructed from x0000 and x0001; and then x00 from x000 and x001;
and so on back to x, using an inverse tree of filters, G...(z).
If the input signal is two dimensional, the binary tree may be extended into a quad-

tree structure, as shown for two levels in figure 2. In a separable implementation,
each level of the quad-tree comprises two stages of filtering: the first stage typically
filters the rows of the image to generate a pair of horizontal lowpass and highpass
subimages; and then the second stage filters the columns of each of these to produce
four subimages, x0, . . . , x3, each one-quarter of the area of x. The lowpass subimage,
x0, is similar to the original but smaller, and is typically decomposed by further
levels of the two-dimensional transform.
The filtering in figure 2 is separable since it is performed separately in the row and

column directions. This is usually the most efficient way to perform two-dimensional
filtering. The technique may be extended, straightforwardly, to more than two dimen-
sions, by applying filters to each dimension in turn. For m dimensions, the number
of sub-bands (subimages) at each level increases to 2m (including the low-frequency
sub-band, passed on to the next level).
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3. Common wavelets with perfect reconstruction

The art of finding good wavelets lies in the design of the set of filters, {H0, H1, G0, G1}
from figure 1b, to achieve various trade-offs between (signal-dependent) spatial and
frequency domain characteristics while satisfying the perfect-reconstruction (PR)
condition. We now briefly consider this design process.
In figure 1b, multi-rate filter analysis shows that

Y (z) = 1
2{X0(z) +X0(−z)}G0(z) + 1

2{X1(z) +X1(−z)}G1(z)

= 1
2X(z){H0(z)G0(z) +H1(z)G1(z)}
+ 1

2X(−z){H0(−z)G0(z) +H1(−z)G1(z)}. (3.1)

The first PR condition requires aliasing cancellation and forces the above term in
X(−z) to be zero. Hence, H0(−z)G0(z) +H1(−z)G1(z) = 0, which can be achieved
if

H1(z) = z−kG0(−z) and G1(z) = zkH0(−z), (3.2)

where k must be odd (usually k = ±1).
The second PR condition is that the transfer function from X(z) to Y (z) should

be unity; i.e. H0(z)G0(z) + H1(z)G1(z) = 2. If we define a product filter P (z) =
H0(z)G0(z) and substitute the results from (3.2), then this condition becomes:

H0(z)G0(z) +H1(z)G1(z) = P (z) + P (−z) = 2. (3.3)

Since the odd powers of z in P (z) cancel with those in P (−z), this requires that
p0 = 1 and that pn = 0 for all n even and non-zero.

P (z) is the transfer function of the lowpass branch in figure 1b (excluding the
effects of the decimator and interpolator), and P (−z) is that of the highpass branch.
For image processing applications, P (z) should be zero phase in order to minimize
distortions when the wavelet coefficients are modified in any way; so to obtain PR it
must be of the form:

P (z) = · · ·+ p5z
5 + p3z

3 + p1z + 1 + p1z
−1 + p3z

−3 + p5z
−5 + · · · . (3.4)

To simplify the tasks of choosing P (z), based on the zero-phase symmetry we
usually transform P (z) into Pt(Z) such that:

P (z) = Pt(Z) = 1 + pt,1Z + pt,3Z
3 + pt,5Z

5 + · · · , where Z = 1
2(z + z−1). (3.5)

If Ts is the sampling period, the frequency response is given by z = ejωTs , and
therefore by Z = cos(ωTs). To obtain smooth wavelets (after many levels of decom-
position), Daubechies (1990) has shown that H0(z) and G0(z) should have a number
of zeros at z = −1 (ωTs = π), so Pt(Z) needs zeros at Z = −1. In general, more
zeros at Z = −1 (and, hence, at z = −1) produce smoother wavelets.
Figure 3 shows five different wavelets satisfying the above equations. They are

shown after four levels of decomposition. On the left are the wavelets formed from
the analysis filters, H, and on the right are the wavelets from the reconstruction
filters, G. These filters may be swapped, so we have chosen the smoother wavelets
for reconstruction, since, for many applications (particularly compression), this gives
the least visible distortions.
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Figure 3. Comparison of some common wavelets. (a) Level 4 analysis wavelets.
(b) Level 4 reconstruction wavelets.

The LeGall (3,5)-tap wavelet is designed by choosing Pt(Z) to be third order, and
constraining the maximum number (two) of zeros to be at Z = −1, consistent with
the even-order term(s) in equation (3.5) being zero. This gives filters, H0 and G0,
which are five and three taps long, respectively. The Antonini (7,9)-tap wavelet is
obtained in the same way, when Pt(Z) is seventh order. In this case there are four
zeros at Z = −1. This wavelet is one of the most favoured by image-compression
researchers and is used in the FBI fingerprint-compression system.
Both of these wavelets are constrained such that all the H and G filters are linear-

phase finite impulse-response filters. Unfortunately, this means that the reconstruc-
tion filters cannot have the same frequency responses as the analysis filters. Wavelets
of this type are known as biorthogonal.
For the frequency responses to be the same, the wavelets must be orthogonal.

The Daubechies (8,8)-tap wavelet is an orthogonal wavelet, obtained from the same
seventh-order Pt(Z) as the Antonini wavelet, but where the factors of z in P (z) are
grouped into reciprocal pairs that are divided equally between H0 and G0 so as to
provide the best approximation to linear-phase responses.
The final two wavelets in figure 3 are linear-phase wavelets that have frequency

responses that are nearly balanced between analysis and reconstruction, and are,
therefore, nearly orthogonal. To achieve this condition, we increase the order of Pt(Z)
by two, without adding further zeros at Z = −1, and hence provide an additional
design parameter that can be used to obtain approximate balance.
We find (Tay & Kingsbury 1993) that the following factorization of a fifth-order

Pt(Z) produces good balance:

Pt(Z) = 1
50(50 + 41Z − 15Z2 − 6Z3) · 1

7(7 + 5Z − 2Z2) = H0t(Z) · G0t(Z). (3.6)

Using the transformation Z = 1
2(z + z−1) gives the simplest near-balanced wavelets

with five and seven tap filters. These wavelets are well balanced but have quite sharp
cusps, as can be seen in the fourth row of figure 3.
Smoother near-balanced wavelets may be obtained by employing a higher-order
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Figure 4. (a) Step response at level 4 of the Antonini (7,9)-tap wavelet; and (b) its shift depen-
dence, showing the variation of energy in each level of wavelet coefficients, for a unit step input
as the position of the input step is shifted. The zero lines (shown dotted) for each level have
been offset for clarity.

transformation from Z to z, such as

Z = pz3 + (12 − p)(z + z−1) + pz−3.

Four zeros on the unit circle near z = −1 are achieved for each zero, Z = −1, if
p = − 3

32 . When substituted into Pt(Z), this gives relatively high-order filters with
13 and 19 taps (although two taps of each filter are zero and they do have an efficient
ladder implementation). The final row of figure 3 shows the improved smoothness of
these wavelets.

4. Some problems with common wavelets

(a) Shift dependence

Figure 3 shows a strong similarity between the shapes of various wavelets. This is
because PR constrains each filter in figure 1 to be approximately a half-band filter.
This causes aliasing and results in severe shift dependence of the wavelet transform.
When we analyse the Fourier spectrum of a signal, we expect the energy in each

frequency bin to be invariant to any shifts of the input in time or space. It would
be desirable if wavelet transforms behaved similarly, but, unfortunately, real wavelet
transforms, even though they have perfect reconstruction properties, do not provide
energy shift invariance separately at each level.
Consider a step function input signal, analysed with the DWT using Antonini

(7,9)-tap filters. The step response at wavelet level 4 is shown in figure 4a, assuming
that wavelet coefficients are computed at the full input sampling rate. In practice,
they are computed at 1

16 of this rate, yielding samples at points such as those of
the crosses in figure 4a. If the input step is shifted relative to the output sampling
grid, then this is equivalent to sampling the step response with a different horizontal
offset; e.g. for an offset of eight input samples, we obtain samples at the circles in
figure 4a.
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Figure 5. (a) Step response at level 4 of complex wavelet (a). (b) Shift dependence of output
energy at levels 1 to 4, showing the variation of energy in each level of wavelet coefficient for a
unit step input as the position of the input step is shifted.

Now, comparing the total energy of the samples at the crosses (which are all quite
small in amplitude) with the energy of the samples at the circles (two of which
are rather large), we find a large energy fluctuation (over 24:1). This illustrates a
significant drawback to using the standard DWT as a tool for analysing signals;
the energy distribution between the various wavelet levels depends critically on the
position of key features of the signal relative to the wavelet subsampling grid. Ideally,
we would like it to depend on just the features themselves.
This problem is illustrated more generally in figure 4b, which shows how the total

energy at each wavelet level varies as the input step is shifted. The period of each
variation equals the subsampling period at that level, and the crosses and circles in
figure 4b show the energies at level 4 corresponding to the shift positions shown by
the equivalent symbols in figure 4a.
Hence we conclude that, due to this shift dependence, real DWTs are unlikely to

give consistent results when used to detect key features in images. This problem is
caused by aliasing due to subsampling at each wavelet level. It can, therefore, be
avoided by not decimating the DWT outputs. However, this produces considerable
data redundancy because each subimage at each wavelet level is the same size as the
input image. This is often known as the undecimated wavelet transform, but, in addi-
tion to being computationally inefficient (even when using the ‘à trous’ algorithm),
this does not solve the other main wavelet problem, discussed below.

(b) Poor directional selectivity

In figure 2, separable filtering of the rows and columns of an image produces four
subimages at each level. The Lo–Hi and Hi–Lo bandpass subimages (e.g. x1 and x2)
can select mainly horizontal or vertical edges, respectively, but the Hi–Hi subimage
(x3) contains components from diagonal features of either orientation. This means
that the separable real DWT has poor directional selectivity.
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Figure 6. Four levels of the complex wavelet tree for a real one-dimensional input signal x. The
real and imaginary parts (r and j) of the inputs and outputs are shown separately. Where there
is only one input to a block, it is a real signal.

One way of explaining this is that real highpass row filters select both positive and
negative horizontal high frequencies, while real highpass column filters select both
positive and negative vertical high frequencies. Hence, the combined Hi–Hi filter must
have passbands in all four quadrants of the two-dimensional frequency plane. On the
other hand, a directionally selective filter for diagonal features with positive gradient
must have passbands only in quadrants 2 and 4 of the frequency plane, while a filter
for diagonals with negative gradient must have passbands only in quadrants 1 and 3.
The poor directional properties of real separable filters make it difficult to generate
steerable or directionally selective algorithms, based on the separable real DWT.

5. Properties of complex wavelets

It is found that both of the above problems can be solved effectively by the complex
wavelet transform (CWT). The structure of the CWT is the same as in figure 1a,
except that the CWT filters have complex coefficients and generate complex output
samples. This is shown in figure 6, in which each block is a complex filter and includes
down-sampling by 2 (not shown) at its outputs. Since the output sampling rates are
unchanged from the DWT, but each sample contains a real and imaginary part, a
redundancy of 2:1 is introduced (we shall show later that this becomes 4:1 in two
dimensions).
The complex filters may be designed such that the magnitudes of their step

responses vary slowly with input shift; only the phases vary rapidly. This is shown
in figure 5a, in which the real and imaginary parts of a typical complex wavelet step
response are superimposed and the uppermost curve represents the magnitude of the
response. Note that the real part is an odd function while the imaginary part is even.
This wavelet was derived from the following simple (4,4)-tap Lo and Hi filters:

h0 = 1
10 [1− j, 4− j, 4 + j, 1 + j],

h1 = 1
48 [−3− 8j, 15 + 8j,−15 + 8j, 3− 8j].

}
(5.1)

The level 1 filters, Lop and Hip in figure 6, include an additional 2-tap prefilter,
which has a zero at z = −j, in order to simulate the effect of a filter tree extending
further levels to the left of level 1, as discussed by Magarey & Kingsbury (1998).
Figure 5b plots the energy at each level versus input step position for this CWT,

and, in contrast to figure 4b, shows that it is approximately constant at all levels.
Hence, the energy of each CWT band may be made approximately shift invariant.
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Simoncelli et al . (1992) have shown that shift invariance of energy distribution is
equivalent to the property of interpolability.
The other key property of these complex wavelets is that their phases vary approx-

imately linearly with input shift (as with Fourier coefficients). Thus, based on mea-
surement of phase shifts, efficient displacement estimation is possible and interpo-
lation between consecutive complex samples can be relatively simple and accurate.
Further details of the design of these wavelets and of their application to motion
estimation are given in Magarey & Kingsbury (1998).

(a) Extension to multiple dimensions

Extension of complex wavelets to two dimensions is achieved by separable filter-
ing along rows and then columns. However, if row and column filters both suppress
negative frequencies, then only the first quadrant of the two-dimensional signal spec-
trum is retained. Two adjacent quadrants of the spectrum are required to represent
fully a real two-dimensional signal, so an extra 2:1 factor of redundancy is required,
producing 4:1 redundancy overall in the transformed two-dimensional signal. This is
achieved by additional filtering with complex conjugates of either the row or column
filters. If the signal exists in m-dimensional space (m > 2), then further conjugate
pairs of filters are needed for each dimension leading to redundancy of 2m:1.
The most computationally efficient way to achieve the pairs of conjugate filters is to

maintain separate imaginary operators, j1 and j2, for the row and column processing,
as shown in figure 7. This produces four-element ‘complex’ vectors: {a, b, c, d} =
a + bj1 + cj2 + dj1j2. Note that these are not quaternions as they have different
properties. Each 4-vector can be converted into a pair of conventional complex 2-
vectors, by letting j1 = j2 = j in one case and j1 = −j2 = −j in the other case.
This corresponds to sum and difference operations on the {a, d} and {b, c} pairs and
produces two complex outputs, (a−d)+(b+c)j and (a+d)+(−b+c)j, corresponding
to first and second quadrant directional filters, respectively. The

∑
/∆ blocks in

figure 7 do this.
Complex filters in multiple dimensions provide true directional selectivity, despite

being implemented separably, because they are still able to separate all parts of
the m-dimensional frequency space. For example, a two-dimensional CWT produces
six bandpass subimages of complex coefficients at each level, which are strongly
orientated at angles of ±15◦, ±45◦ and ±75◦, depicted by the double-headed arrows
in figure 7 and by the two-dimensional impulse responses in figure 12.

6. The dual-tree complex wavelet transform

For many applications it is important that the transform be perfectly invertible. A
few authors, such as Lawton (1993) and Belzer et al . (1995), have experimented
with complex factorizations of the standard Daubechies polynomials and obtained
PR complex filters, but these do not give filters with good frequency-selectivity
properties. To provide shift invariance and directional selectivity, all of the complex
filters should emphasize positive frequencies and reject negative frequencies, or vice
versa (see §§ 5 and 7).
Unfortunately, it is very difficult to design an inverse transform, based on complex

filters of the type defined at the start of § 5, which has good frequency selectivity and
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Figure 7. Two levels of the complex wavelet tree for a real two-dimensional input image x,
giving six directional bands at each level (the directions are shown for level 1). Components of
four-element ‘complex’ vectors are labelled r, j1, j2, j1j2.

PR at all levels of the transform. Although such filters can be designed to give PR
quite easily at level 1 of the tree by applying the constraint that the reconstructed
output signal must be real, a similar constraint cannot be applied at further levels
where inputs and outputs are complex. For PR below level 1, the set of four filters
in figure 1b must have a flat overall frequency response. However, this is not possible
if all of the filters tend to reject negative frequencies. Hence, a different approach to
generating a complex filter tree is needed.
In Kingsbury (1998a, b), we introduced the DT CWT, which added perfect recon-

struction to the other attractive properties of complex wavelets: shift invariance;
good directional selectivity; limited redundancy; and efficient order-N computation.
The dual-tree transform was developed by noting that approximate shift invariance

can be achieved with a real DWT by doubling the sampling rate at each level of the
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Figure 8. Dual tree of real filters for the DT CWT, showing whether the filters have odd or
even length. The two trees give the real and imaginary parts of the complex coefficients.

Input samples Block of 16 input samples✛ ✲
x: 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Level 1 samples
odd Lo x0a: a a a a a a a a
odd Lo x0b: b b b b b b b b
odd Hi x1a: a a a a a a a a
odd Hi x1b: b b b b b b b b

Level 2 samples
even Lo x00a: a a a a
odd Lo x00b: b b b b
Hi x01a, x01b: ∗ ∗ ∗ ∗

Level 3 samples
odd Lo x000a: a a
even Lo x000b: b b
Hi x001a, x001b: ∗ ∗

Level 4 samples
even Lo x0000a: a
odd Lo x0000b: b

Hi x0001a, x0001b: ∗
Figure 9. Effective sampling instants of odd and even filters in figure 8 assuming zero phase

responses. (a = tree a, b = tree b, ∗ = combined samples.)

tree. For this to work, the samples must be evenly spaced. We can double all the
sampling rates in figure 1a by eliminating the down-sampling by 2 after the level 1
filters. This is equivalent to having two parallel fully decimated trees, a and b in
figure 8, provided that the delays of H0b and H1b are one sample offset from H0a and
H1a. We then find that, to get uniform intervals between samples from the two trees
below level 1, the filters in one tree must provide delays that are half a sample different
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X(z)

Tree b

✲ B(z) ✲✖✕
✗✔
↓M

Tree a
✲ A(z) ✲✖✕

✗✔
↓M

✲✖✕
✗✔
↑M ✲ D(z) Yb(z)✻

✲✖✕
✗✔
↑M ✲ C(z) Ya(z)

❄

✍✌
✎�
+ ✲ Y (z)

Figure 10. Basic configuration of the dual tree if either wavelet or scaling-function coefficients
from just level m are retained (M = 2m).

(at each filter input rate) from those in the other tree. For linear phase, this requires
odd-length filters in one tree and even-length filters in the other. Greater symmetry
between the two trees occurs if each tree uses odd and even filters alternately from
level to level, but this is not essential. In figure 9 we show the effective sampling
instants of the filter output samples when the filters are odd and even, as in figure 8.
For example, at level 2, the tree a filters are even length, so the a output samples
(x00a) occur midway between pairs of samples from the a lowpass filter at level 1
(x0a), whereas the tree b filters are odd length, so the b output samples (x00b) are
aligned with samples from the b lowpass filter at level 1 (x0b).
To invert the transform, the PR filters G are applied in the usual way to invert

each tree separately, and, finally, the two results are averaged. Compared with the
undecimated (à trous) wavelet tree, which eliminates down-sampling after every level
of filtering, the dual tree effectively eliminates down-sampling only after the level 1
filters, and, hence, its redundancy is much less.
Thus far, the dual tree does not appear to be a complex transform at all. However,

when the outputs from the two trees in figure 8 are interpreted as the real and
imaginary parts of complex wavelet coefficients, the transform effectively becomes
complex. If the filters are from linear-phase PR biorthogonal sets, the odd-length
highpass filters have even symmetry about their midpoint, while the even-length
highpass filters have odd symmetry. The impulse responses of these then look very
like the real and imaginary parts of the complex wavelets of the previous section.
In fact, the block diagrams of figures 6 and 7 still apply to the dual-tree transform,
although the operations within each filter block do change: the real and imaginary
parts of each block’s output are no longer calculated based on the usual rules of
complex algebra, but, instead, each is based on filtering just one part of the block’s
input with either an odd- or even-length filter.

7. Shift-invariant filter design

In order to show the shift-invariant properties of the dual tree, we consider what
happens when the signal is reconstructed using coefficients of just one type (wavelet
or scaling function) from just one level of the dual tree. This models (in an extreme
way) the virtual elimination of certain sub-bands that commonly occur in many algo-
rithms. For example, we might choose to retain only the level-3 wavelet coefficients,
x001a and x001b, from figure 8, and set all others to zero. If the signal y, reconstructed
from just these coefficients, is free of aliasing, then the transform is defined to be
shift invariant at that level.
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Figure 10 shows the simplified analysis and reconstruction parts of the dual tree
when coefficients of just one type and level are retained. All down(up)-sampling
operations are moved to the output (input) of the analysis (reconstruction) filter
banks and the cascaded filter transfer functions are combined. M = 2m is the total
down-sampling factor. For example, if we retain only x001a and x001b, then M = 8,
A(z) = H0a(z)H00a(z2)H001a(z4) and B(z), C(z), D(z) are obtained similarly.
Letting W = ej2π/M , multirate analysis of figure 10 gives:

Y (z) =
1
M

M−1∑
k=0

X(W kz)[A(W kz)C(z) +B(W kz)D(z)]. (7.1)

For shift invariance, the aliasing terms (for which k 	= 0) must be negligible. So we
design B(W kz)D(z) to cancel out A(W kz)C(z) for all non-zero k that give overlap
of the pass or transition bands of the filters C(z) or D(z) with those of the shifted
filters A(W kz) or B(W kz). Separate strategies are needed depending on whether the
filters are lowpass (for scaling functions) or bandpass (for wavelets).
For level m in the dual tree, the lowpass filters have passbands from (−fs/2M)

to (fs/2M), where fs is the input sampling frequency. The W k terms in (7.1) shift
the passbands in multiples, k, of fs/M . If A(z) and C(z) have similar frequency
responses (as required for near-orthogonal filter sets) and significant transition bands,
it is not possible to make A(Wz)C(z) small at all frequencies z = ejθ, because the
frequency shift, fs/M , of A(z) due to W is too small (the A and C responses tend to
overlap at their −3 dB points). However, it is quite easy to design A(W 2z)C(z) to
be small since the frequency shift of A is twice as great and the responses no longer
overlap significantly. Hence, for the lowpass case, we design B(W kz)D(z) to cancel
A(W kz)C(z) when k is odd by letting

B(z) = z±M/2A(z) and D(z) = z∓M/2C(z), (7.2)

so that B(W kz)D(z) = (−1)kA(W kz)C(z). In this way, the unwanted aliasing terms,
mainly at k = ±1, are approximately cancelled out. This is equivalent to a single
tree with a decimation by 1

2M rather than M .
Now consider the bandpass case. Here we find that the edges of the positive fre-

quency passband of C or D, (fs/2M) → (fs/M), will tend to overlap with the
edges of the negative frequency passband of A or B, which gets shifted either to
0 → (fs/2M) or to (fs/M) → (3fs/2M) when k = 1 or 2, respectively. Similarly for
the opposite passbands when k = −1 or −2. We find that the main aliasing terms
are always caused by the overlap of opposing frequency passbands (i.e. passbands
that have opposite polarity of centre frequency in the unshifted filters). It happens
that the solution here is to give B and D positive and negative passbands of opposite
polarity while A and C have passbands of the same polarity (or vice versa).
Suppose we have prototype complex filters P (z) and Q(z), each with just a single

passband (fs/2M) → (fs/M) and zero gain at all negative frequencies, then we let

A(z) = Re[2P (z)] = P (z) + P ∗(z),
B(z) = Im[2P (z)] = −j[P (z)− P ∗(z)],
C(z) = Re[2Q(z)] = Q(z) +Q∗(z),
D(z) = Im[−2Q(z)] = j[Q(z)− Q∗(z)],




(7.3)
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Figure 11. (a) Impulse responses at level 4 of the DT CWT scaling function, and wavelet; (b)

frequency responses of the wavelets at levels 1–4 and of the level 4 scaling function.

where conjugation is given by

P ∗(z) =
∑

r

p∗
rz

−r,

and produces negative frequency passbands. The overlap terms are of the form
Q(z)P ∗(W kz) for k = 1, 2, and Q∗(z)P (W kz) for k = −1, −2, which all cancel
when B(W kz)D(z) is added to A(W kz)C(z) in (7.1) to give

A(W kz)C(z) +B(W kz)D(z) = 2P (W kz)Q(z) + 2P ∗(W kz)Q∗(z). (7.4)

Hence, we now need only design the filters such that the positive frequency complex
filter Q(z) does not overlap with shifted versions of the similar filter P (z). This is
quite easy since the complex filter bandwidths are only fs/2M , while the shifts are in
multiples of fs/M . The formulations in equation (7.3) show that the highpass filter
outputs from trees a and b should be regarded as the real and imaginary parts of
complex processes.
For the lowpass filters, equation (7.2) implies that the tree b samples should inter-

polate midway between the tree a samples, effectively doubling the sampling rate,
as shown by the interleaved a and b samples at each level in figure 9. This may be
achieved by two identical lowpass filters (either odd or even) at level 1, offset by 1
sample delay, and then by pairs of odd and even length filters at further levels to
achieve the extra delay difference of 1

4M samples, to make the total difference 1
2M

at each level.
The responses of A(z) and B(z) also need to match, which can be achieved exactly

at level 1, but only approximately beyond this. We do this by designing the even-
length H00a(z) to give minimum mean squared error in the approximation

z±2H0a(z)H00a(z2) ≈ H0b(z)H00b(z2).

Note that H00b(z) = H0b(z) = zH0a(z), so this is just a matrix pseudo-inverse
problem. Then the H01a can be designed to form a perfect reconstruction set with
H00a, such that the reconstruction filters, G00a and G00b, also match each other
closely.
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Table 1. Table of coefficients for the DT CWT analysis filters

(The reconstruction filters are obtained by negating alternate coefficients and swapping bands.)

odd H...0 odd H...1 even H...0 even H...1

13-tap 19-tap 12-tap 16-tap

−0.000 070 6
0 −0.000 464 5

−0.001 758 1 0.001 341 9 0.001 334 9
0 −0.001 883 4 −0.005 810 9 0.002 200 6
0.022 265 6 −0.007 156 8 0.016 697 7 −0.013 012 7

−0.046 875 0 0.023 856 0 −0.000 064 1 0.001 536 0
−0.048 242 2 0.055 643 1 −0.083 491 4 0.086 900 8
0.296 875 0 −0.051 688 1 0.091 953 7 0.083 355 2
0.555 468 8 −0.299 757 6 0.480 715 1 −0.488 595 7
0.296 875 0 0.559 430 8 0.480 715 1 0.488 595 7

−0.048 242 2 −0.299 757 6 0.091 953 7 −0.083 355 2
...

...
...

...

real

imag.

15 45 75 (deg)

real

imag.

75 45 15 (deg) 
Figure 12. Real and imaginary parts of two-dimensional impulse responses for the six bandpass

bands at level 4. (See table 1 for the coefficients for the DT CWT analysis filters.)

Finally, the symmetry of the odd-length highpass filters and the anti-symmetry
of the even-length highpass filters produce the required phase relationships between
the positive and negative frequency passbands, and equation (7.3) is approximately
satisfied too.
These filters can then be used for all subsequent levels of the transform. Good shift

invariance (and wavelet smoothness) requires that frequency response sidelobes of
the cascaded multi-rate filters should be small. This is achieved if each lowpass filter
has a stopband covering 1

3 to
2
3 of its sample rate, so as to reject the image frequencies

due to subsampling in the next lowpass stage. If the highpass filters then mirror this
characteristic, the conditions for no overlap of the shifted bandpass responses in (7.4)
are automatically satisfied.
As an example, we selected two linear-phase PR biorthogonal filter sets that meet

the above conditions quite well and are also nearly orthogonal. For the odd-length
set, we took the (13,19)-tap filters, designed using the transformation of variables
method given at the end of § 3, and then designed a (12,16)-tap even-length set to
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Figure 13. Wavelet and scaling function components at levels 1–4 of 16 shifted step responses
using the DT CWT (a) and real DWT (b); and of one quadrant of a ‘disc’ image using the
DT CWT (c) and real DWT (d).

match (as above). Figure 11 shows impulse responses and frequency responses of the
reconstruction filter bank; and the analysis filters are very similar. The coefficients
are listed in table 1 and the two-dimensional versions of the level 4 impulse responses
are shown in figure 12 (note their strong directionality).
Figure 13a demonstrates the shift invariance in one dimension of the DT CWT

with these filters. The input of the transform (at the top) is a unit step, shifted to
16 adjacent sampling instants in turn (each shift is displaced down a little to give
a waterfall style of display). Below this are shown the components of the output of
the inverse transform, reconstructed in turn from the wavelet coefficients at each
of levels 1–4, and from the scaling function coefficients at level 4. This follows our
definition of shift invariance given at the start of this section. Note that summing
these components reconstructs the input steps perfectly. Good shift invariance is seen
from the fact that each of the reconstructed output components in figure 13a has a
shape and amplitude that hardly varies as the input is shifted. This shows that the
DT CWT has decomposed the input step into five separate components, which are
virtually independent of the location of the step relative to the sub-sampling points
of the transform.
For comparison, figure 13b shows the equivalent components if the real DWT is

used. The DWT components are much less consistent with shift. The energies of the
DT CWT coefficients at any given level vary over the 16 shifts by no more than
1.025:1, whereas the DWT coefficient energies vary by up to 5.45:1: a big difference!
Although the five components of the DWT still sum to give perfectly reconstructed
steps at each shift position, the decomposition varies considerably with shift. If we
are trying to detect features of a signal from its wavelet decomposition, then it is
highly confusing to have the sort of unwanted variation with shift shown in figure 13b.
Figure 13c, d shows the equivalent comparison in two dimensions using an image

of a circular disc as input. The gradual shift and rotation of the edge of the disc

Phil. Trans. R. Soc. Lond. A (1999)



Image processing with complex wavelets 2559

(a) (b)

(c) (d)

Figure 14. 128 × 128 pel portions of the pepper’s image: (a) with white Gaussian noise added
to give SNR = 3.0 dB; (b) denoised with real DWT, SNR = 12.24 dB; (c) denoised with undec-
imated WT, SNR = 13.45 dB; (d) denoised with dual-tree CWT, SNR = 13.51 dB.

with respect to the rectangular sub-sampling grids of the transform (not shown)
form a good test of shift and rotational dependencies. In these images, all bandpass
coefficients at a given wavelet level are retained. In figure 13c we see the near-perfect
circular arcs, generated by the components at each level for the DT CWT, which
show good shift and rotational invariance. Contrast these with the badly distorted
arcs for the DWT in figure 13d, caused by aliasing.

8. Applications of the complex wavelet transform

The shift invariance and directionality of the CWT may be applied to advantage in
many areas of image processing, for example: denoising, restoration, texture mod-
elling, steerable filtering, registration/motion processing, object segmentation, and
image classification. We have space for only one example here.
In figure 14 we show an example of denoising. Image (d) is the result of denoising

image (a) using the DT CWT and a simple soft thresholding method that sup-
presses all complex wavelet coefficients x of low amplitude with a raised cosine gain
law: g(x) = 1

2(1− cos{π|x|/T}) for |x| < T , and g(x) = 1 elsewhere. For comparison,
we show images (b) and (c), which were obtained using the same soft thresholding
method with the real DWT in its decimated and undecimated forms, respectively.
(b) shows significantly worse artefacts than (d), while (c) is very similar to (d) but
requires about five times as much computation. In all cases, the thresholds T were
selected so as to get minimum mean-squared error from the original (clean) image.
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In practice, more complicated thresholding methods may be used, such as in Malfait
& Roose (1997), which uses Markov random fields in conjunction with an undeci-
mated WT. It is likely that, by replacing the undecimated WT with the CWT, the
effectiveness of the MRFs at coarser wavelet levels can be improved, owing to the
more appropriate sampling rates of the CWT.
In conclusion, we are now investigating a number of applications of the CWT and

are finding that it may have many uses as a multiresolution front end for processing
images and other multidimensional signals.
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